Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
JBMR Plus ; 8(4): ziae013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523663

RESUMEN

Hip areal BMD (aBMD) is widely used to identify individuals with increased fracture risk. Low aBMD indicates low strength, but this association differs by sex with men showing greater strength for a given aBMD than women. To better understand the structural basis giving rise to this sex-specific discrepancy, cadaveric proximal femurs from White female and male donors were imaged using nano-CT and loaded in a sideways fall configuration to assess strength. FN pseudoDXA images were generated to identify associations among structure, aBMD, and strength that differ by sex. Strength correlated significantly with pseudoDXA aBMD for females (R2 = 0.468, P < .001) and males (R2 = 0.393, P < .001), but the elevations (y-intercepts) of the linear regressions differed between sexes (P < .001). Male proximal femurs were 1045 N stronger than females for a given pseudoDXA aBMD. However, strength correlated with pseudoDXA BMC for females (R2 = 0.433, P < .001) and males (R2 = 0.443, P < .001) but without significant slope (P = .431) or elevation (P = .058) differences. Dividing pseudoDXA BMC by FN-width, total cross-sectional area, or FN-volume led to significantly different associations between strength and the size-adjusted BMC measures for women and men. Three structural differences were identified that differentially affected aBMD and strength for women and men: First, men had more bone mass per unit volume than women; second, different cross-sectional shapes resulted in larger proportions of bone mass orthogonal to the DXA image for men than women; and third, men and women had different proportions of cortical and trabecular bone relative to BMC. Thus, the proximal femurs of women were not smaller versions of men but were constructed in fundamentally different manners. Dividing BMC by a bone size measure was responsible for the sex-specific associations between hip aBMD and strength. Thus, a new approach for adjusting measures of bone mass for bone size and stature is warranted.

3.
JBMR Plus ; 7(3): e10715, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36936363

RESUMEN

Bone mineral density (BMD) is heavily relied upon to reflect structural changes affecting hip strength and fracture risk. Strong correlations between BMD and strength are needed to provide confidence that structural changes are reflected in BMD and, in turn, strength. This study investigated how variation in bone structure gives rise to variation in BMD and strength and tested whether these associations differ with external bone size. Cadaveric proximal femurs (n = 30, White women, 36-89+ years) were imaged using nanocomputed tomography (nano-CT) and loaded in a sideways fall configuration to assess bone strength and brittleness. Bone voxels within the nano-CT images were projected onto a plane to create pseudo dual-energy X-ray absorptiometry (pseudo-DXA) images consistent with a clinical DXA scan. A validation study using 19 samples confirmed pseudo-DXA measures correlated significantly with those measured from a commercially available DXA system, including bone mineral content (BMC) (R 2  = 0.95), area (R 2  = 0.58), and BMD (R 2  = 0.92). BMD-strength associations were conducted using multivariate linear regression analyses with the samples divided into narrow and wide groups by pseudo-DXA area. Nearly 80% of the variation in strength was explained by age, body weight, and pseudo-DXA BMD for the narrow subgroup. Including additional structural or density distribution information in regression models only modestly improved the correlations. In contrast, age, body weight, and pseudo-DXA BMD explained only half of the variation in strength for the wide subgroup. Including bone density distribution or structural details did not improve the correlations, but including post-yield deflection (PYD), a measure of bone material brittleness, did increase the coefficient of determination to more than 70% for the wide subgroup. This outcome suggested material level effects play an important role in the strength of wide femoral necks. Thus, the associations among structure, BMD, and strength differed with external bone size, providing evidence that structure-function relationships may be improved by judiciously sorting study cohorts into subgroups. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
JBMR Plus ; 6(8): e10653, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991534

RESUMEN

Morphological parameters measured for the second metacarpal from hand radiographs are used clinically for assessing bone health during growth and aging. Understanding how these morphological parameters relate to metacarpal strength and strength at other anatomical sites is critical for providing informed decision-making regarding treatment strategies and effectiveness. The goals of this study were to evaluate the extent to which 11 morphological parameters, nine of which were measured from hand radiographs, relate to experimentally measured whole-bone strength assessed at multiple anatomical sites and to test whether these associations differed between men and women. Bone morphology and strength were assessed for the second and third metacarpals, radial diaphysis, femoral diaphysis, and proximal femur for 28 white male donors (18-89 years old) and 35 white female donors (36-89+ years old). The only morphological parameter to show a significant correlation with strength without a sex-specific effect was cortical area. Dimensionless morphological parameters derived from hand radiographs correlated significantly with strength for females, but few did for males. Males and females showed a significant association between the circularity of the metacarpal cross-section and the outer width measured in the mediolateral direction. This cross-sectional shape variation contributed to systematic bias in estimating strength using cortical area and assuming a circular cross-section. This was confirmed by the observation that use of elliptical formulas reduced the systematic bias associated with using circular approximations for morphology. Thus, cortical area was the best predictor of strength without a sex-specific difference in the correlation but was not without limitations owing to out-of-plane shape variations. The dependence of cross-sectional shape on the outer bone width measured from a hand radiograph may provide a way to further improve bone health assessments and informed decision making for optimizing strength-building and fracture-prevention treatment strategies. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
J Orthop Res ; 40(8): 1827-1833, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34799865

RESUMEN

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and circulate in the blood, making them attractive biomarkers of disease state for tissues like bone that are challenging to interrogate directly. Here, we report on five miRNAs-miR-197-3p, miR-320a, miR-320b, miR-331-5p, and miR-423-5p-associated with bone mineral density (BMD) in 147 healthy adult baboons. These baboons ranged in age from 15 to 25 years (45-75 human equivalent years) and 65% were female with a broad range of BMD values including a minority of osteopenic animals. miRNAs were generated via RNA sequencing from buffy coats collected at necropsy and areal BMD (aBMD) measured postmortem via dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae. Differential expression analysis controlled for the underlying pedigree structure of these animals to account for genetic variation which may drive miRNA abundance and aBMD values. While many of these miRNAs have been associated with the risk of osteoporosis in humans, this finding is of interest because the cohort represents a model of normal aging and bone metabolism rather than a disease cohort. The replication of miRNA associations with osteoporosis or other bone metabolic disorders in animals with healthy aBMD suggests an overlap in normal variation and disease states. We suggest that these miRNAs are involved in the regulation of cellular proliferation, apoptosis, and protein composition in the extracellular matrix throughout life; and age-related dysregulation of these systems may lead to disease. These miRNAs may be early indicators of progression to disease in advance of clinically detectible osteoporosis.


Asunto(s)
MicroARN Circulante , MicroARNs , Osteoporosis , Envejecimiento , Animales , Densidad Ósea , Femenino , Humanos , Masculino , Papio/genética
6.
Curr Osteoporos Rep ; 19(5): 542-552, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34269975

RESUMEN

PURPOSE OF REVIEW: Image-based measurements of bone integrity are used to estimate failure properties and clinical fracture risk. This paper (1) reviews recent imaging studies that have enhanced our understanding of the mechanical pathways to bone fracture and (2) discusses the influence that inter-individual differences in image-based measurements may have on the clinical assessment of fracture risk RECENT FINDINGS: Increased tissue mineralization is associated with improved bone strength but reduced fracture toughness. Trabecular architecture that is important for fatigue resistance is less important for bone strength. The influence of porosity on bone failure properties is heavily dependent on pore location and size. The interaction of various characteristics, such as bone area and mineral content, can further complicate their influence on bone failure properties. What is beneficial for bone strength is not always beneficial for bone toughness or fatigue resistance. Additionally, given the large amount of imaging data that is clinically available, there is a need to develop effective translational strategies to better interpret non-invasive measurements of bone integrity.


Asunto(s)
Densidad Ósea , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/etiología , Absorciometría de Fotón , Humanos , Porosidad , Tomografía Computarizada por Rayos X
7.
Comput Methods Biomech Biomed Engin ; 22(10): 942-952, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31064209

RESUMEN

Quantifying joint deformity in people with rheumatoid (RA) and psoriatic arthritis (PsA) remains challenging. Here, we demonstrate a new method to measure bone erosions and abnormal periosteal growths, based on the difference between a predicted healthy and actual diseased joint surface. We optimized the method by creating and measuring artificial bone erosions and growths. Then we measured 46 healthy and diseased patient surfaces. We found average sensitivity errors of ≤0.27 mm when measuring artificial erosions and growths. Patients had significantly more bone erosion than healthy subjects. Surface based outcomes are a novel way to interpret and quantify bone changes in PsA and RA.


Asunto(s)
Artritis Psoriásica/diagnóstico por imagen , Artritis Psoriásica/patología , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/patología , Procesamiento de Imagen Asistido por Computador , Articulaciones/diagnóstico por imagen , Articulaciones/patología , Algoritmos , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Periostio/diagnóstico por imagen , Periostio/crecimiento & desarrollo , Periostio/patología , Proyectos Piloto
8.
J Bone Miner Res ; 34(5): 825-837, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30715752

RESUMEN

Given prior work showing associations between remodeling and external bone size, we tested the hypothesis that wide bones would show a greater negative correlation between whole-bone strength and age compared with narrow bones. Cadaveric male radii (n = 37 pairs, 18 to 89 years old) were evaluated biomechanically, and samples were sorted into narrow and wide subgroups using height-adjusted robustness (total area/bone length). Strength was 54% greater (p < 0.0001) in wide compared with narrow radii for young adults (<40 years old). However, the greater strength of young-adult wide radii was not observed for older wide radii, as the wide (R2 = 0.565, p = 0.001), but not narrow (R2 = 0.0004, p = 0.944) subgroup showed a significant negative correlation between strength and age. Significant positive correlations between age and robustness (R2 = 0.269, p = 0.048), cortical area (Ct.Ar; R2 = 0.356, p = 0.019), and the mineral/matrix ratio (MMR; R2 = 0.293, p = 0.037) were observed for narrow, but not wide radii (robustness: R2 = 0.015, p = 0.217; Ct.Ar: R2 = 0.095, p = 0.245; MMR: R2 = 0.086, p = 0.271). Porosity increased with age for the narrow (R2 = 0.556, p = 0.001) and wide (R2 = 0.321, p = 0.022) subgroups. The wide subgroup (p < 0.0001) showed a significantly greater elevation of a new measure called the Cortical Pore Score, which quantifies the cumulative effect of pore size and location, indicating that porosity had a more deleterious effect on strength for wide compared with narrow radii. Thus, the divergent strength-age regressions implied that narrow radii maintained a low strength with aging by increasing external size and mineral content to mechanically offset increases in porosity. In contrast, the significant negative strength-age correlation for wide radii implied that the deleterious effect of greater porosity further from the centroid was not offset by changes in outer bone size or mineral content. Thus, the low strength of elderly male radii arose through different biomechanical mechanisms. Consideration of different strength-age regressions (trajectories) may inform clinical decisions on how best to treat individuals to reduce fracture risk. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Envejecimiento , Densidad Ósea , Radio (Anatomía) , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/patología , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Radio (Anatomía)/metabolismo , Radio (Anatomía)/patología
9.
J Biomech ; 83: 125-133, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30527634

RESUMEN

Accurately estimating whole bone strength is critical for identifying individuals that may benefit from prophylactic treatments aimed at reducing fracture risk. Strength is often estimated from stiffness, but it is not known whether the relationship between stiffness and strength varies with age and sex. Cadaveric proximal femurs (44 Male: 18-78 years; 40 Female: 24-95 years) and radial (36 Male: 18-89 years; 19 Female: 24-95 years) and femoral diaphyses (34 Male: 18-89 years; 19 Female: 24-95 years) were loaded to failure to evaluate how the stiffness-strength relationship varies with age and sex. Strength correlated significantly with stiffness at all sites and for both sexes, as expected. However, females exhibited significantly less strength for the proximal femur (58% difference, p < 0.001). Multivariate regressions revealed that stiffness, age and PYD were significant negative independent predictors of strength for the proximal femur (Age: M: p = 0.005, F: p < 0.001, PYD: M: p = 0.022, F: p = 0.025), radial diaphysis (Age: M = 0.055, PYD: F = 0.024), and femoral diaphysis (Age: M: p = 0.014, F: p = 0.097, PYD: M: p = 0.003, F: p = 0.091). These results indicated that older bones tended to be significantly weaker for a given stiffness than younger bones. These results suggested that human bones exhibit diminishing strength relative to stiffness with aging and with decreasing PYD. Incorporating these age- and sex-specific factors may help to improve the accuracy of strength estimates.


Asunto(s)
Envejecimiento/fisiología , Fémur/fisiología , Fenómenos Mecánicos , Radio (Anatomía)/fisiología , Caracteres Sexuales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Densidad Ósea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Bone ; 106: 35-41, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28987286

RESUMEN

The objective of this study was to elucidate sex differences in the anatomy of human temporomandibular joint mandibular condyles using a statistical shape and trait model (SSTM). Mandibles were obtained from 16 human cadavers (79±13years). The condyles were scanned using micro-computed tomography with 27µm resolution. An image processing algorithm was used to segment the bone, determine the border of the entire mandibular condyle and trabecular bone compartments, and create triangulated meshes of the compartments. One subject was chosen as the template and was registered to the other individuals using a coherence point drift algorithm. This process positioned all vertices at corresponding anatomic locations. For the trabecular bone region, around each vertex position, the average bone image intensity, which is proportional to bone density, and microstructural traits, including trabecular bone volume fraction, thickness, separation, connectivity, and connectivity density were calculated. For the entire mandibular condyle mesh, the surface vertices were extracted to represent the overall anatomy of the condyle. Using a SSTM, the shape and trait information was reduced to a small set of independent and uncorrelated variables for each individual. Wilcoxon rank sum tests were used to test for differences in the variables between sexes. A lasso approach was used to determine a set of variables that differentiate between sexes. Male condyles were on average larger than female condyles, with complex differences in the microstructural traits. Two out of 15 principal components were statistically different between males and females (p<0.1). The lasso approach determined a set of 7 principal components that fully described the complex shape and trait differences between males and females. A SSTM was able to determine sex-dependent differences in the shape of the mandibular condyle. These differences may alter the biomechanics of the joint and contribute to the development of temporomandibular joint disease.


Asunto(s)
Cóndilo Mandibular/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Algoritmos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Caracteres Sexuales , Articulación Temporomandibular/diagnóstico por imagen , Microtomografía por Rayos X
11.
Artículo en Inglés | MEDLINE | ID: mdl-27990418

RESUMEN

Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.

12.
Bonekey Rep ; 4: 664, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25908967

RESUMEN

As in clinical studies, finite element analysis (FEA) developed from computed tomography (CT) images of bones are useful in pre-clinical rodent studies assessing treatment effects on vertebral body (VB) strength. Since strength predictions from microCT-derived FEAs (µFEA) have not been validated against experimental measurements of mouse VB strength, a parametric analysis exploring material and failure definitions was performed to determine whether elastic µFEAs with linear failure criteria could reasonably assess VB strength in two studies, treatment and genetic, with differences in bone volume fraction between the control and the experimental groups. VBs were scanned with a 12-µm voxel size, and voxels were directly converted to 8-node, hexahedral elements. The coefficient of determination or R (2) between predicted VB strength and experimental VB strength, as determined from compression tests, was 62.3% for the treatment study and 85.3% for the genetic study when using a homogenous tissue modulus (E t) of 18 GPa for all elements, a failure volume of 2%, and an equivalent failure strain of 0.007. The difference between prediction and measurement (that is, error) increased when lowering the failure volume to 0.1% or increasing it to 4%. Using inhomogeneous tissue density-specific moduli improved the R (2) between predicted and experimental strength when compared with uniform E t=18 GPa. Also, the optimum failure volume is higher for the inhomogeneous than for the homogeneous material definition. Regardless of model assumptions, µFEA can assess differences in murine VB strength between experimental groups when the expected difference in strength is at least 20%.

13.
Artículo en Inglés | MEDLINE | ID: mdl-25506051

RESUMEN

Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3-T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures.

14.
J Bone Miner Res ; 29(9): 2090-100, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24692132

RESUMEN

Increased risk of skeletal fractures due to bone mass loss is a major public health problem resulting in significant morbidity and mortality, particularly in the case of hip fractures. Current clinical methods based on two-dimensional measures of bone mineral density (areal BMD or aBMD) are often unable to identify individuals at risk of fracture. We investigated predictions of fracture risk based on statistical shape and density modeling (SSDM) methods using a case-cohort sample of individuals from the Osteoporotic Fractures in Men (MrOS) study. Baseline quantitative computed tomography (QCT) data of the right femur were obtained for 513 individuals, including 45 who fractured a hip during follow-up (mean 6.9 year observation, validated by physician review). QCT data were processed for 450 individuals (including 40 fracture cases) to develop individual models describing three-dimensional bone geometry and density distribution. Comparison of mean fracture and non-case models indicated complex structural differences that appear to be responsible for resistance to hip fracture. Logistic regressions were used to model the relation of baseline hip BMD and SSDM weighting factors to the occurrence of hip fracture. Area under the receiver operating characteristic (ROC) curve (AUC) for a prediction model based on weighting factors and adjusted by age was significantly greater than AUC for a prediction model based on aBMD and age (0.94 versus 0.83, respectively). The SSDM-based prediction model adjusted by age correctly identified 55% of the fracture cases (and 94.7% of the non-cases), whereas the clinical standard aBMD correctly identified 10% of the fracture cases (and 91.3% of the non-cases). SSDM identifies subtle changes in combinations of structural bone traits (eg, geometric and BMD distribution traits) that appear to indicate fracture risk. Investigation of important structural differences in the proximal femur between fracture and no-fracture cases may lead to improved prediction of those at risk for future hip fracture.


Asunto(s)
Fémur/patología , Fracturas de Cadera/epidemiología , Fracturas de Cadera/patología , Estadística como Asunto , Densidad Ósea , Fémur/fisiopatología , Fracturas de Cadera/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Análisis de Componente Principal , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo , Tomografía Computarizada por Rayos X
15.
Acta Biomater ; 10(3): 1360-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24291329

RESUMEN

In order to enhance the healing potential of an injured tendon, we have prepared a novel biomimetic aligned collagen-nanoparticle (NP) composite fiber using an electrochemical process. The aligned collagen-NP composite fiber is designed to affect the cellular activity of adipose-derived stem cells (ADSCs) through two different ways: (i) topographic cues from the alignment of collagen fibril and (ii) controlled release of platelet-derived growth factors (PDGFs) from the NPs. PDGF released from collagen-NP fibers significantly enhanced the proliferation of ADSCs when tested for up to 7 days. Moreover, compared to random collagen fibers with PDGFs, aligned collagen-NP fibers significantly promoted the desirable tenogenic differentiation of ADSCs, as evidenced by an increased level of tendon markers such as tenomodulin and scleraxis. On the other hand, no undesirable osteogenic differentiation, as measured by the unchanged level of alkaline phosphatase and osteocalcin, was observed. Together, these results indicate that the aligned collagen-NP composite fiber induced the tenogenic differentiation of ADSCs through both a topographic cue (aligned collagen fibril) and a chemical cue (PDGF released from NPs). Thus, our novel aligned collagen-NP composite fiber has a significant potential to be used for tendon tissue engineering and regeneration.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/efectos de los fármacos , Colágeno/farmacología , Nanopartículas/química , Factor de Crecimiento Derivado de Plaquetas/farmacología , Células Madre/citología , Tendones/citología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Bovinos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Técnicas Electroquímicas , Masculino , Nanopartículas/ultraestructura , Poliésteres/química , Polietilenglicoles/química , Ratas Endogámicas Lew , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tendones/efectos de los fármacos
16.
Artículo en Inglés | MEDLINE | ID: mdl-21360361

RESUMEN

Skeletal fractures associated with bone mass loss are a major clinical problem and economic burden, and lead to significant morbidity and mortality in the ageing population. Clinical image-based measures of bone mass show only moderate correlative strength with bone strength. However, engineering models derived from clinical image data predict bone strength with significantly greater accuracy. Currently, image-based finite element (FE) models are time consuming to construct and are non-parametric. The goal of this study was to develop a parametric proximal femur FE model based on a statistical shape and density model (SSDM) derived from clinical image data. A small number of independent SSDM parameters described the shape and bone density distribution of a set of cadaver femurs and captured the variability affecting proximal femur FE strength predictions. Finally, a three-dimensional FE model of an 'unknown' femur was reconstructed from the SSDM with an average spatial error of 0.016 mm and an average bone density error of 0.037 g/cm(3).


Asunto(s)
Fémur/anatomía & histología , Análisis de Elementos Finitos , Modelos Anatómicos , Anciano , Femenino , Humanos , Persona de Mediana Edad
17.
J Biomech ; 43(9): 1780-6, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20227696

RESUMEN

We hypothesize that variability in knee subchondral bone surface geometry will differentiate between patients at risk and those not at risk for developing osteoarthritis (OA) and suggest that statistical shape modeling (SSM) methods form the basis for developing a diagnostic tool for predicting the onset of OA. Using a subset of clinical knee MRI data from the osteoarthritis initiative (OAI), the objectives of this study were to (1) utilize SSM to compactly and efficiently describe variability in knee subchondral bone surface geometry and (2) determine the efficacy of SSM and rigid body transformations to distinguish between patients who are not expected to develop osteoarthritis (i.e. Control group) and those with clinical risk factors for OA (i.e. Incidence group). Quantitative differences in femur and tibia surface geometry were demonstrated between groups, although differences in knee joint alignment measures were not statistically significant, suggesting that variability in individual bone geometry may play a greater role in determining joint space geometry and mechanics. SSM provides a means of explicitly describing complete articular surface geometry and allows the complex spatial variation in joint surface geometry and joint congruence between healthy subjects and those with clinical risk of developing or existing signs of OA to be statistically demonstrated.


Asunto(s)
Fémur/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Osteoartritis de la Rodilla/patología , Tibia/patología , Simulación por Computador , Interpretación Estadística de Datos , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Propiedades de Superficie
18.
Bone ; 45(5): 892-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19523547

RESUMEN

A great deal of research into the determinants of bone strength has unequivocally demonstrated that variation in bone strength is highly subject to genetic factors. Increasing attention in skeletal genetic studies is being paid to indicators of bone quality that complement studies of BMD, including studies of the genetic control of bone geometry. The aim of this study is to investigate the degree to which normal population-level variation in femoral midshaft geometry in a population of pedigreed baboons (Papio hamadryas spp.) can be attributed to the additive effect of genes. Using 110 baboons (80 females, 30 males), we 1) characterize normal variation in midshaft geometry of the femur with regard to age and sex, and 2) determine the degree to which the residual variation is attributable to additive genetic effects. Cross-sectional area (CSA), minimum (I(MIN)) and maximum (I(MAX)) principal moments of inertia, and polar moment of inertia (J) were calculated from digitized images of transverse midshaft sections. Maximum likelihood-based variance decomposition methods were used to estimate the mean effects of age, sex, and genes. Together age and sex effects account for approximately 56% of the variance in each property. In each case the effect of female sex is negative and that of age is positive, although of a lower magnitude than the effect of female sex. Increased age is associated with decreased mean cross-sectional geometry measures in the oldest females. Residual h(2) values range from 0.36 to 0.50, reflecting genetic effects accounting for 15% to 23% of the total phenotypic variance in individual properties. This study establishes the potential of the baboon model for the identification of genes that regulate bone geometric properties in primates. This model is particularly valuable because it allows for experimental designs, environmental consistency, availability of tissues, and comprehensive assessments of multiple integrated bone phenotypes that are not possible in human populations. The baboon is of particular importance in genetic studies, because it provides results that are likely highly relevant to the human condition due to the phylogenetic proximity of baboons to humans.


Asunto(s)
Fémur/anatomía & histología , Papio/genética , Carácter Cuantitativo Heredable , Envejecimiento/genética , Animales , Femenino , Masculino , Caracteres Sexuales
19.
J Biomech Eng ; 128(4): 473-80, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16813438

RESUMEN

The present study examines the viscoelastic behavior of cancellous bone at low strains and the effects of damage on this viscoelastic behavior. It provides experimental evidence of interaction between stress relaxation behavior and the effect of accumulated damage. The results suggest that damage is at least orthotropic in trabecular bone specimens under uniaxial loading. Simple linear models of viscoelasticity described the time-dependent stress-strain behavior at low strains before and after specimen damage, although better fits of these models were obtained prior to damage. Modeling the observed changes in relaxation times with damage accumulation appears necessary to successfully predict the post-damage viscoelastic response.


Asunto(s)
Fracturas por Compresión/fisiopatología , Vértebras Lumbares/lesiones , Vértebras Lumbares/fisiopatología , Modelos Biológicos , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas/lesiones , Vértebras Torácicas/fisiopatología , Anisotropía , Cadáver , Fuerza Compresiva , Simulación por Computador , Elasticidad , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Viscosidad , Soporte de Peso
20.
Clin Orthop Relat Res ; (432): 217-25, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15738825

RESUMEN

Fixation of subtrochanteric femur fractures may present complications, including malunion, delayed union, or nonunion, and is thought to be related to early fracture stability. To examine the initial stability of subtrochanteric fracture fixation, we investigated construct stiffness, interfragmentary gaps, and overall and point-wise interfragmentary motion (ie, axial and shear displacements) in synthetic composite femurs fixed with a cephalomedullary nail or condylar blade plate. Simulated stable and unstable subtrochanteric femur fractures were created in composite femurs, anatomically reduced, fixed with either a long Gamma nail or a blade plate, and subjected to combined axial, bending, and torsional loading. The long Gamma nail group consistently showed greater displacement magnitudes than the blade plate group; these differences included axial and shear displacement magnitudes in the stable fracture group and shear displacement magnitudes in the unstable fracture group. Overall differences in fixation stability were dependent on discrete points around the periphery of the contiguous fracture surfaces, especially in the unstable fracture group. These differences in interfragmentary motion patterns between implant constructs were detected despite the lack of difference in combined axial, bending, and torsional construct stiffness or initial interfragmentary gap.


Asunto(s)
Fijación Interna de Fracturas/métodos , Fracturas de Cadera/cirugía , Modelos Biológicos , Fijación Interna de Fracturas/instrumentación , Curación de Fractura , Humanos , Estrés Mecánico , Anomalía Torsional , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...